Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Eng Life Sci ; 24(5): 2200069, 2024 May.
Article in English | MEDLINE | ID: mdl-38708418

ABSTRACT

Bioconversion of CO2 into liquid fuels or chemicals, preferred medium chain carboxylic acids (caproic and caprylic acid), is an attractive CO2 utilization technology. The present study aims to investigate the effects of different ratios of H2/CO2 on regulating the distribution of C2-C8 carboxylic acid products, while the headspace pressure of 1.5 bar was set to amplify the effect of different ratios. The H2/CO2 ratio of 4:1 was more suitable for preparing acetic acid, where the highest acetic acid yield was 17.5 g/L. And the H2/CO2 ratio of 2:1 showed excellent chain elongation ability with the highest n-caprylic yield of 2.4 g/L. Additionally, the actual H2/CO2 ratios of 4:1 reactors were higher than that in 2:1 may be course chain elongation often accompanied by H2 production. The 16S rRNA genes analysis shows that the genus Terrisporobacter and Coriobacteriales may be related to acetic acid production enriched in H2/CO2 ratio 4:1 reactors, and the genus Clostridium and Paenibacillaceae may associate with the chain elongation pathway were enriched in H2/CO2 ratio 2:1 reactors.

2.
J Environ Sci (China) ; 143: 164-175, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644014

ABSTRACT

Utilizing CO2 for bio-succinic acid production is an attractive approach to achieve carbon capture and recycling (CCR) with simultaneous production of a useful platform chemical. Actinobacillus succinogenes and Basfia succiniciproducens were selected and investigated as microbial catalysts. Firstly, the type and concentration of inorganic carbon concentration and glucose concentration were evaluated. 6 g C/L MgCO3 and 24 g C/L glucose were found to be the optimal basic operational conditions, with succinic acid production and carbon yield of over 30 g/L and over 40%, respectively. Then, for maximum gaseous CO2 fixation, carbonate was replaced with CO2 at different ratios. The "less carbonate more CO2" condition of the inorganic carbon source was set as carbonate: CO2 = 1:9 (based on the mass of carbon). This condition presented the highest availability of CO2 by well-balanced chemical reaction equilibrium and phase equilibrium, showing the best performance with regarding CO2 fixation (about 15 mg C/(L·hr)), with suppressed lactic acid accumulation. According to key enzymes analysis, the ratio of phosphoenolpyruvate carboxykinase to lactic dehydrogenase was enhanced at high ratios of gaseous CO2, which could promote glucose conversion through the succinic acid path. To further increase gaseous CO2 fixation and succinic acid production and selectivity, stepwise CO2 addition was evaluated. 50%-65% increase in inorganic carbon utilization was obtained coupled with 20%-30% increase in succinic acid selectivity. This was due to the promotion of the succinic acid branch of the glucose metabolism, while suppressing the pyruvate branch, along with the inhibition on the conversion from glucose to lactic acid.


Subject(s)
Carbon Dioxide , Succinic Acid , Carbon Dioxide/metabolism , Succinic Acid/metabolism , Actinobacillus/metabolism , Glucose/metabolism
3.
Cell Biol Toxicol ; 40(1): 23, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630355

ABSTRACT

Cytosolic thiouridylase 2 (CTU2) is an enzyme modifying transfer RNAs post-transcriptionally, which has been implicated in breast cancer and melanoma development. And we found CTU2 participated in hepatocellular carcinoma (HCC) progression here. HepG2 cells as well as xenograft nude mice model were employed to investigate the role of CTU2 in HCC development in vitro and in vivo respectively. Further, we defined CTU2 as a Liver X receptor (LXR) targeted gene, with a typical LXR element in the CTU2 promoter. CTU2 expression was activated by LXR agonist and depressed by LXR knockout. Interestingly, we also found CTU2 took part in lipogenesis by directly enhancing the synthesis of lipogenic proteins, which provided a novel mechanism for LXR regulating lipid synthesis. Meanwhile, lipogenesis was active during cell proliferation, particularly in tumor cells. Reduction of CTU2 expression was related to reduced tumor burden and synergized anti-tumor effect of LXR ligands by inducing tumor cell apoptosis and inhibiting cell proliferation. Taken together, our study identified CTU2 as an LXR target gene. Inhibition of CTU2 expression could enhance the anti-tumor effect of LXR ligand in HCC, identifying CTU2 as a promising target for HCC treatment and providing a novel strategy for the application of LXR agonists in anti-tumor effect.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Liver X Receptors , Animals , Female , Humans , Mice , Breast Neoplasms , Carcinoma, Hepatocellular/genetics , Disease Models, Animal , Liver Neoplasms/genetics , Liver X Receptors/genetics , Mice, Nude
5.
Antiviral Res ; 223: 105825, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311297

ABSTRACT

Feline coronavirus (FCoV) is an unsegmented, single-stranded RNA virus belonging to the Alphacoronavirus genus. It can cause fatal feline infectious peritonitis (FIP) in cats of any ages. Currently, there are no effective prevention and control measures to against FCoV. In this study, we developed a recombinant adenovirus vaccine, AD5-N, based on the nucleocapsid(N) protein of FCoV. The immunogenicity of AD5-N was evaluated through intramuscular immunization in 6-week-old Balb/c mice and 9-12 months old cats. Compared to the control group, AD5-N specifically induced a significant increase in IgG and SIgA levels in the vaccinated mice. Furthermore, AD5-N not only effectively promoted strong cellular immune responses in cats but also induced high levels of specific SIgA, effectively helping cats resist FCoV infection. Our findings suggest that adenovirus vector vaccines based on the N gene have the potential to become candidate vaccines for the prevention and control of FCoV infection.


Subject(s)
Adenoviridae Infections , Adenovirus Vaccines , Coronavirus Infections , Coronavirus, Feline , Vaccines , Cats , Animals , Mice , Adenoviridae/genetics , Coronavirus, Feline/genetics , Immunoglobulin A, Secretory , Mice, Inbred BALB C , Immunity
6.
Bioresour Technol ; 393: 129953, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37914053

ABSTRACT

The biochemical methane potential test is a standard method to determine the biodegradability of lignocellulosic wastes (LWs) during anaerobic digestion (AD) with disadvantages of long experiment duration and high operating expense. This paper developed a machine learning model to predict the cumulative methane yield (CMY) using the data of 157 LWs regarding physicochemical characteristics, digestion condition and methane yield, with the coefficient of determination equal to 0.869. Model interpretability analyses underscored lignin content, organic loading, and nitrogen content as pivotal attributes for CMY prediction. For the feedstocks with a cellulose content exceeding about 50%, the CMY in the early AD stage would be relatively lower than those with low cellulose content, but prolonging digestion time could promote methane production. Besides, lignin content in feedstock surpassing 15% would significantly inhibit methane production. This work contributes to valuable guidance for feedstock selection and operation optimization for AD plants.


Subject(s)
Cellulose , Lignin , Lignin/chemistry , Anaerobiosis , Biomass , Methane , Biofuels
7.
Environ Sci Pollut Res Int ; 31(1): 1079-1093, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030843

ABSTRACT

Anaerobic digestion (AD) technology is a practical approach to alleviate severe environmental issues caused by vegetable wastes (VWs). However, its primary product is methane-rich biogas converted from the precursors (mainly volatile fatty acids, VFAs) after long fermentation periods, making traditional AD projects of low economic profits. Intervening in the methanogenesis stage artificially to produce high value-added VFAs can shorten the reaction time of the AD process and significantly improve profits, posing a promising alternative for treating VWs. Given this, this study applied heat shock (HS) pretreatment to inoculum to prevent methane production during AD and systemically investigated the effects of HS pretreatment and initial pH regulation on VFA production from VWs. The results showed that appropriate HS pretreatment effectively inhibited methane generation but promoted VFA accumulation, and VFA production was further enhanced by adjusting the initial pH to 8.0 and 9.0. The highest total VFA concentration of 14,883 mg/L with a VFA yield of 496.1 mg/gVS, 26.98% higher than that of the untreated group, was achieved at an initial pH 8.0 with HS pretreatment of 80 °C for 1 h. Moreover, pH regulation influenced the metabolic pathway of VFA production from VWs during AD, as butyrate was the dominant product at an initial pH of 6.0, while the increased initial pH improved the acetate proportion.


Subject(s)
Bioreactors , Vegetables , Vegetables/metabolism , Anaerobiosis , Hydrogen-Ion Concentration , Fermentation , Fatty Acids, Volatile/metabolism , Methane/metabolism , Heat-Shock Response , Sewage
8.
Bioresour Technol ; 393: 130092, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38000644

ABSTRACT

Tobacco straw is an abundant biomass in China's agricultural ecosystems, and has high potential for methane production. However, the anaerobic digestion (AD) efficiency is limited by the recalcitrant lignocellulose structure of the tobacco straw. In this study, three microaerobic pretreatments were performed for the AD of tobacco straw to increase methane production. Among them, microbial pretreatment with biogas slurry at an oxygen concentration of 4 mL/g VS resulted in the highest methane production of 349.1 mL/g VS, increasing by 19.8 % than that of untreated. During this pretreatment, the relative abundances of Enterococcus and Clostridium sensu stricto 12, which are closely related to acetic acid production and cellulose degradation, were high, and these bacteria might have an important contribution to substrate hydrolysis and the methanogenesis efficiency of the AD process. This study advances the understanding of microaerobic pretreatment processes and provides technological guidance for the efficient utilization of tobacco straw.


Subject(s)
Ecosystem , Methane , Anaerobiosis , Zea mays/metabolism , Bacteria/metabolism , Biofuels
9.
Mol Plant ; 16(11): 1832-1846, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37798878

ABSTRACT

Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most important diseases of rice. Utilization of blast-resistance genes is the most economical, effective, and environmentally friendly way to control the disease. However, genetic resources with broad-spectrum resistance (BSR) that is effective throughout the rice growth period are rare. In this work, using a genome-wide association study, we identify a new blast-resistance gene, Pijx, which encodes a typical CC-NBS-LRR protein. Pijx is derived from a wild rice species and confers BSR to M. oryzae at both the seedling and panicle stages. The functions of the resistant haplotypes of Pijx are confirmed by gene knockout and overexpression experiments. Mechanistically, the LRR domain in Pijx interacts with and promotes the degradation of the ATP synthase ß subunit (ATPb) via the 26S proteasome pathway. ATPb acts as a negative regulator of Pijx-mediated panicle blast resistance, and interacts with OsRbohC to promote its degradation. Consistently, loss of ATPb function causes an increase in NAPDH content and ROS burst. Remarkably, when Pijx is introgressed into two japonica rice varieties, the introgression lines show BSR and increased yields that are approximately 51.59% and 79.31% higher compared with those of their parents in a natural blast disease nursery. In addition, we generate PPLPijx Pigm and PPLPijx Piz-t pyramided lines and these lines also have higher BSR to panicle blast compared with Pigm- or Piz-t-containing rice plants. Collectively, this study demonstrates that Pijx not only confers BSR to M. oryzae but also maintains high and stable rice yield, providing new genetic resources and molecular targets for breeding rice varieties with broad-spectrum blast resistance.


Subject(s)
Magnaporthe , Oryza , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Seedlings/genetics , Seedlings/metabolism , Disease Resistance/genetics , Genome-Wide Association Study , Plant Breeding , Adenosine Triphosphate/metabolism , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Magnaporthe/genetics
10.
Braz J Microbiol ; 54(4): 3299-3305, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37673839

ABSTRACT

Duck hepatitis B virus (DHBV) infection model was frequently used as the experimental model for human hepatitis B virus (HBV) research. In order to decipher the genetic characteristics of DHBVs from Anhui province of China, 120 duck liver tissue samples were collected and subjected to PCR screening, and 28 samples were detected as DHBV positive. Subsequently, five DHBV-positive samples were selected for genome-wide amplification and a comprehensive analysis. Comparative analysis of complete genome sequences using the MegAlign program showed that five strains of DHBVs shared 94.5-96.3% with each other and 93.2-98.7% with other reference strains in GenBank. The phylogenetic analysis showed that all five DHBV strains belonged to the evolutionary branch of "Chinese DHBV" isolates or DHBV-2. Importantly, three potential intra-genotypic recombination events, between strains AAU-6 and Guilin, strains AAU-1 and GD3, and strains AAU-6 and AAU-1, were respectively found using the RDP and SimPlot softwares and considered the first report in avihepadnaviruses. These results not only improve our understanding for molecular prevalence status of DHBV among ducks, but also provide a reference for recombination mechanism of HBV.


Subject(s)
Hepatitis B Virus, Duck , Animals , Humans , Hepatitis B Virus, Duck/genetics , Phylogeny , Polymerase Chain Reaction/methods , Hepatitis B virus/genetics , Ducks/genetics , Ducks/microbiology , DNA, Viral/genetics , Liver
11.
J Colloid Interface Sci ; 651: 376-383, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37544226

ABSTRACT

The oxygen evolution reaction (OER) has garnered considerable attention because of its promising prospects in electrochemical energy conversion applications, but a significant challenge is faced by the insufficient understanding of sluggish OER kinetics. In fact, the intrinsic "acceptance-donation" process of electrons between active sites and reactants is responsible for improving OER activity. Herein, we suggest a multielement hybridization strategy to rematch spin electron occupation and energy splitting in high-entropy perovskites with multiple orbital coordination. In this concept, electronic hopping between t2g and eg orbitals among particular catalytic sites can be obviously enforced due to introducing more favorable energy levels from neighboring metal sites, which can demonstrate multistage orbital hybridization reaction activity. As a result, our proposed multistage-hybridized high-entropy perovskites display an impressive activity of 199.8 mA cm-2 as an overpotential of âˆ¼0.46 V, which is âˆ¼5.3 times that of pristine perovskite. Different from traditional catalyst designs, this study focuses on multistage orbital hybridization and electron exchange interactions through a multisite coordination mechanism to construct a fast reaction pathway. Our findings provide a new strategy for accelerating OER catalytic kinetics.

12.
Genes (Basel) ; 14(7)2023 06 22.
Article in English | MEDLINE | ID: mdl-37510221

ABSTRACT

The Duck Tembusu virus (DTMUV), a pathogenic flavivirus, has been causing significant economic losses in the Chinese poultry industry since 2010. This virus can severely decrease egg production and inhibit the growth of laying ducks and ducklings. While many vaccines have been developed to prevent DTMUV infection, fresh outbreaks continue to occur, as few effective vaccines are available. The E glycoprotein of DTMUV is the primary target for inducing protective immunity in the natural host. Therefore, we conducted an investigation and successfully developed a recombinant baculovirus containing the DTMUV E gene. Ducklings were then vaccinated with the purified protein derived from this virus as a potential vaccine candidate. Our findings demonstrated that the E glycoprotein of DTMUV was highly expressed in Sf9 cells. The vaccination of ducklings with the recombinant baculovirus Bac-E resulted in the induction of strong humoral and cellular immune responses. Most significantly, we observed that the vaccine provided 100% protective immunity against lethal challenges with the DTMUV YY5 strain.


Subject(s)
Flavivirus Infections , Flavivirus , Viral Vaccines , Animals , Ducks , Flavivirus Infections/prevention & control , Flavivirus Infections/veterinary , Baculoviridae/genetics , Antibodies, Viral , Viral Vaccines/genetics , Flavivirus/genetics , Glycoproteins , Transcription Factors
13.
Heliyon ; 9(6): e16416, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37292302

ABSTRACT

Ghana's Renewable Energy Master Plan of 2019 includes the production and use of biomass pellets. However, pellets have neither been developed commercially nor included in Ghana's energy mix. This paper reviewed the prospect of production, adoption and sustained use of pellets in Ghana. Besides having abundant biomass resources, Ghana has high market demand and relevant policies for pellet development. The production of pellets can significantly replace traditional household biomass demand and improve environmental and health quality. However, the production and use of pellets are limited due to technical, financial, social and policy issues. Our estimates show that 3% of the annual national average household income will be spent on pellet demand for cooking, with the highest burden on rural households in Ghana. Practical measures are required since the cost of pellets and gasifier stoves may limit pellet adoption and use in Ghana. Based on study findings, it is recommended that the government of Ghana establishes a robust supply chain and provides infrastructure for pellet production and use. Existing renewable energy policies should be reviewed to remove ambiguities, attract investment, and build capacity in the renewable energy sector. Apart from raising public awareness of the benefits of pellets use, the government of Ghana should ensure that continuous and thorough impact assessments are undertaken to assess the implications of pellet production and use. This review will inform policymaking on achieving sustainable production, adoption and use of pellets and assess Ghana's contribution to achieving the United Nations' sustainable development goals.

14.
Virol J ; 20(1): 87, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37143065

ABSTRACT

BACKGROUND: Felid herpesvirus 1 (FHV-1) is a major pathogenic agent of upper respiratory tract infections and eye damage in felines worldwide. Current FHV-1 vaccines offer limited protection of short duration, and therefore, do not reduce the development of clinical signs or the latency of FHV-1. METHODS: To address these shortcomings, we constructed FHV ∆gIgE-eGFP, FHV ∆TK mCherry, and FHV ∆gIgE/TK eGFP-mCherry deletion mutants (ΔgI/gE, ΔTK, and ΔgIgE/TK, respectively) using the clustered regularly interspaced palindromic repeats (CRISPR)/CRISP-associated protein 9 (Cas9) system (CRISPR/Cas9), which showed safety and immunogenicity in vitro. We evaluated the safety and efficacy of the deletion mutants administered with intranasal (IN) and IN + subcutaneous (SC) vaccination protocols. Cats in the vaccination group were vaccinated twice at a 4-week interval, and all cats were challenged with infection 3 weeks after the last vaccination. The cats were assessed for clinical signs, nasal shedding, and virus-neutralizing antibodies (VN), and with postmortem histological testing. RESULTS: Vaccination with the gI/gE-deleted and gI/gE/TK-deleted mutants was safe and resulted in significantly lower clinical disease scores, fewer pathological changes, and less nasal virus shedding after infection. All three mutants induced virus-neutralizing antibodies after immunization. CONCLUSIONS: In conclusion, this study demonstrates the advantages of FHV-1 deletion mutants in preventing FHV-1 infection in cats.


Subject(s)
Cat Diseases , Herpesviridae Infections , Varicellovirus , Cats , Animals , Virulence , Varicellovirus/genetics , Vaccination , Antibodies, Neutralizing , Herpesviridae Infections/prevention & control , Herpesviridae Infections/veterinary , Cat Diseases/prevention & control
16.
Sci Rep ; 13(1): 4691, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949091

ABSTRACT

Cross rolling process is a new method to manufacture large-diameter gears, which has great advantages. While during the gear manufacturing process with cross rolling, due to the difference of deformation mechanism between the right and left formed tooth profiles, a tip is pulled at the tooth top of the workpiece, which severely affects the forming quality. To eliminate the occurred defect, the finishing roller is proposed and designed, the motion equation of the finishing roller is established and solved, the principle of the height increase of the formed tooth is obtained. And also a simplified finite element (FE) model with finishing roller and non-finishing roller are established in the DEFORM-3D software. The comparison of the simulation results between two situations is analyzed and can be concluded that with the finishing roller, the protrusions at both sides of the tooth top of the workpiece at each stage are flattened by the finishing roller, and the accumulation of the tooth top protrusions is not going to occur, which means no extrusion and finishing of the tooth top of the workpiece are required. In addition, the experiment with the finishing roller is carried out and the effectiveness of the finishing roller can be verified.

17.
Sci Total Environ ; 873: 162324, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36813202

ABSTRACT

Biodegradable plastics (BPs) tend to replace conventional plastics, which increases the amount of BP waste entering the environment. The anaerobic environment exists extensively in nature, and anaerobic digestion has become a widely used technique for organic waste treatment. Many kinds of BPs have low biodegradability (BD) and biodegradation rates under anaerobic condition due to the limitation of hydrolysis, so they still have harmful environmental consequences in anaerobic environment. There is an urgent need to find an intervention method to improve the biodegradation of BPs. Therefore, this study aimed to investigate the effectiveness of alkaline pretreatment in accelerating the thermophilic anaerobic degradation of ten widely used BPs, such as poly (lactic acid) (PLA), poly (butylene adipate-co-terephthalate) (PBAT), thermoplastic starch (TPS), poly (butylene succinate-co-butylene adipate) (PBSA), cellulose diacetate (CDA), etc. The results showed that NaOH pretreatment significantly improved the solubility of PBSA, PLA, poly (propylene carbonate) (PPC), and TPS. Except for PBAT, pretreatment with an appropriate NaOH concentration could improve the BD and degradation rate. The pretreatment also reduced the lag phase in the anaerobic degradation of BPs such as PLA, PPC, and TPS. Specifically, for CDA and PBSA, the BD increased from 4.6 % and 30.5 % to 85.2 % and 88.7 %, with increments of 1752.2 % and 190.8 %, respectively. Microbial analysis indicated that NaOH pretreatment promoted the dissolution and hydrolysis of PBSA and PLA and the deacetylation of CDA, which contributed to rapid and complete degradation. This work not only provides a promising method for improving the degradation of BP waste but also lays the foundation for its large-scale application and safe disposal.


Subject(s)
Biodegradable Plastics , Anaerobiosis , Sodium Hydroxide , Polyesters , Plastics/metabolism , Biodegradation, Environmental , Adipates/metabolism
18.
ACS Synth Biol ; 12(3): 898-903, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36795971

ABSTRACT

CRISPR/Cas systems have been widely used in the precise and traceless genetic engineering of bacteria. Sinorhizobium meliloti 320 (SM320) is a Gram-negative bacterium with a low efficiency of homologous recombination but a strong ability to produce vitamin B12. Here, a CRISPR/Cas12e-based genome engineering toolkit, CRISPR/Cas12eGET, was constructed in SM320. The expression level of CRISPR/Cas12e was tuned through promoter optimization and the use of a low copy plasmid to adjust Cas12e cutting activity to the low homologous recombination efficiency of SM320, resulting in improved transformation and precision editing efficiencies. Furthermore, the accuracy of CRISPR/Cas12eGET was improved by deleting the ku gene involved in NHEJ repair in SM320. This advance will be useful for metabolic engineering and basic research on SM320, and it further provides a platform to develop the CRISPR/Cas system in strains where the efficiency of homologous recombination is low.


Subject(s)
Gene Editing , Sinorhizobium meliloti , CRISPR-Cas Systems/genetics , Gene Editing/methods , Metabolic Engineering , Plasmids/genetics , Sinorhizobium meliloti/genetics , Vitamin B 12/chemistry
19.
BMC Vet Res ; 19(1): 11, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36647038

ABSTRACT

BACKGROUND: Peste des petits ruminants (PPR) disease is a cross-species infectious disease that severely affects small ruminants and causes great losses to livestock industries in various countries. Distinguishing vaccine-immunized animals from naturally infected animals is an important prerequisite for the eradication of PPR. At present PPRV are classified into lineages I through IV, and only one vaccination strain, Nigeria/75/1, belongs to lineage II, but all of the epidemic strains in China at present are from lineage IV. RESULTS: To achieve this goal, we developed an SYBR Green I real-time qRT-PCR method for rapid detection and identification of PPRV lineages II and IV by analyzing different melting curve analyses. The negative amplification of other commonly circulating viruses such as orf virus, goat poxvirus, and foot-and-mouth disease virus demonstrated that primers targeting the L gene of PPRV were extremely specific. The sensitivity of the assay was assessed based on plasmid DNA and the detection limit achieved was 100 copies of PPRV lineages II and IV. CONCLUSION: Since the method has high sensitivity, specificity, and reproducibility, it will be effectively differentiated PPRV lineages II from PPRV lineages IV in PPRV infected animals.


Subject(s)
Goat Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Peste-des-petits-ruminants virus/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Reproducibility of Results , Peste-des-Petits-Ruminants/epidemiology , Ruminants , Goats , Goat Diseases/epidemiology
20.
Arch Virol ; 168(2): 33, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36609724

ABSTRACT

Virulent systemic feline calicivirus (VS-FCV) is a newly emerging FCV variant that is associated with a severe acute multisystem disease in cats that is characterized by jaundice, oedema, and high mortality (approximately 70%). VS-FCV has spread throughout the world, but there are no effective vaccines or therapeutic options to combat infection. VS-FCV may therefore pose a serious threat to the health of felines. The genomic characteristics and functions of VS-FCV are still poorly understood, and the reason for its increased pathogenicity is unknown. Reverse genetics systems are powerful tools for studying the molecular biology of RNA viruses, but a reverse genetics system for VS-FCV has not yet been reported. In this study, we developed a plasmid-based reverse genetics system for VS-FCV in which infectious progeny virus is produced in plasmid-transfected CRFK cells. Using this system, we found that the 3' untranslated region (UTR) and poly(A) tail are important for maintaining the infection and replication capacity of VS-FCV and that shortening of the poly(A) tail to less than 28 bases eliminated the ability to rescue infectious progeny virus. Whether these observations are unique to VS-FCV or represent more-general features of FCV remains to be determined. In conclusion, we successfully established a rapid and efficient VS-FCV reverse genetics system, which provides a good platform for future research on the gene functions and pathogenesis of VS-FCV. The effects of the deletion of 3' UTR and poly(A) tail on VS-FCV infectivity and replication also provided new information about the pathogenesis of VS-FCV.


Subject(s)
Caliciviridae Infections , Calicivirus, Feline , Cat Diseases , Cats , Animals , 3' Untranslated Regions/genetics , Calicivirus, Feline/genetics , DNA, Complementary , Reverse Genetics , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...